PAPER: “Numerical Evaluation of Early-Age Crack Induction in CRCP with Different Saw-Cut Dimensions Subjected to External Varying Temperature Field”

Applied Sciences published paper by Muhammad Kashif, Ahsan Naseem , Nouman Iqbal, Pieter De Winne, and Hans De Backer: Department of Civil Engineering, Ghent University, Technologiepark 60, Zwijnaarde, B-9052 Ghent, Belgium—December 23, 2020

Abstract: Since 1970, continuously reinforced concrete pavements (CRCPs) have been used in Belgium. The standard design concept for CRCP has been modified through several changes made in the design parameters to eliminate the cluster of closely spaced crack patterns, since these crack patterns lead to the development of spalling and punch-out distresses in CRCPs. Despite adjusting the longitudinal reinforcement ratio, slab thickness, and addition of asphalt interlayer, the narrowly spaced cracks could not be effectively removed.


Click to download paper
The application of transverse partial surface saw-cuts significantly reduced the probability of randomly occurring cracks in the reconstruction project of the Motorway E313 in Herentals, Belgium. The field investigation has also indicated that the early-age crack induction in CRCP is quite susceptible to the saw-cut depth. Therefore, the present study aims to evaluate the effect of different depths and lengths of the partial surface saw-cut on the effectiveness of crack induction in CRCP under external varying temperature field.

For this purpose, the FE software program DIANA 10.3 is used to develop the three dimensional finite element model of the active crack control CRCP segment. The characteristics of early-age crack induction in terms of crack initiation and crack propagation obtained from the FE model are compared and discussed concerning the field observations of the crack development on the active crack control E313 test sections. Findings indicate that the deeper saw-cut with longer cut-lengths could be a more effective attempt to induce the cracks in CRCP in desirable distributions to decrease the risk of spalling and punch-out distresses in the long-term performance of CRCP. These findings could be used as guidance to select the appropriate depth and length of saw-cut for active crack control sections of CRCP in Belgium.

For the 19-page paper, please click on image of cover above, or go to: https://www.concretepavements.org/wp-content/uploads/2020/12/applsci-11-00042-v2.pdf
(Link for “downloads to your computer”: https://www.google.com/url?rct=j&sa=t&url=https://www.mdpi.com/2076-3417/11/1/42/pdf&ct=ga&cd=CAEYASoUMTQ4NjE2MTU2MTE2NDM2Njg3OTMyGmIzM2IwZDYzM2I5YjI4MjM6Y29tOmVuOlVT&usg=AFQjCNG-XozFySziqUbgQ2MFoUQltUNexA)

Scroll to Top